传感器实验报告(电容式传感器)
传感器技术实验报告院(系)机械工程系专业班级姓名同组同学实验时间2014年月日,第周,星期第节实验地点单片机与传感器实验室实验台号实验五电容式传感器的位移特性实验一、实验目的1.了解电容式传感器结构及其特点;2.掌握差动变面积式电容传感器的位移实验技术。
二、实验仪器电容传感器、电容传感器实验模板、测微头、数显直流电压表、直流稳压电源、绝缘护套三、实验原理电容式传感器是指能将被测物理量的变化转换为电容量变化的一种传感器,它实质上是具有一个可变参数的电容器。
利用平板电容器原理:式中,S为极板面积,d为极板间距离,ε0真空介电常数,εr介质相对介电常数,由此可以看出当被测物理量使S、d或εr发生变化时,电容量C随之发生改变,如果保持其中两个参数不变而仅改变另一参数,就可以将该参数的变化单值地转换为电容量的变化。
所以电容传感器可以分为三种类型:改变极间距离的变间隙式,改变极板面积的变面积式和改变介质电常数的变介电常数式。
这里采用变面积式,如图1两只平板电容器共享一个下极板,当下极板随被测物体移动时,两只电容器上下极板的有效面积一只增大,一只减小,将三个极板用导线引出
电容式传感器特点
1.电容式传感具有的优点1)简单应性强电容式传感器结构简单,易于制造,精,可以做得很小,以实现某些特殊的测量。
电容式传感器一般用金属作电极,以无机材料作绝缘支承,因此可工作在高低温、强辐射及强磁场等恶劣的环境中,能承受很大的温度变化,承受高压力、高冲击、过载等,能测超高压和低压差。
2)动态响应好电容式传感器由于极板间的静电引力很小,需要的作用能量极小,可动部分可以做得小而薄,质量轻,因此固有频率高,动态响应时间短,能在几兆赫的频率下工作,特别适合于动态测量。
电容式传感器可以用较高频率供电,因此系统工作频率高。
它可用于测量高速变化的参数,如测量振动、瞬时压力等。
3)分辨率高由于传感器的带电极板间的引力极小,需要输入能量低,所以特别适合于用来解决输入能量低的问题,如测量极小的压力、力和很小的加速度、位移等,可以做得很灵敏,分辨力非常高,能感受0. 001 pm,甚至更小的位移。
4)温度稳定性好电容式传感器的电容值一般与电极材料无关,仅取决于电极的几何尺寸,介质损耗非常小。
应选择温度系数低的材料,其本身发热极小,因此影响稳定性也极微小。
5)可窦现非接触测量、具有平均效应在被测试件不能受力、高速运动、表面不连续,以及表面不允许有划痕等情况下,传感器不能与被测试件有接触,电容式传感器就可以完成这样的测量任务。
如回转轴的振动或偏心、小型滚珠轴承的径向间隙等,采用非接触测量时,电容式传感器具有平均效应,可以减小工件表面粗糙度等对测量的影响。
电容式传感器有哪几类测量电路
各有什么特点
电容传感器调零是使电容传感器无位移时的输出的起始点为最小,调成零是最好的。
可以更好、更方便地看传感器回零的情况。
另外,一般地传感器应用都不是单独地使用,而是配合其他仪表,如记录仪、执行机构等使用,如果起始点不为零,对记录仪、执行机构来说就会有动作。
以自动控制的控制阀门来说,控制信号为零,阀门关着,既为零;控制信号最大,阀门开度达最大。
这里,我们说的控制信号可以是传感器输出的信号。
我现在在做传感器的实验做到了一个叫电容式液料位传感器
加速度传感器原理与应用简介 1、什么是加速度传感器 加速度传感器是一种能够测量加速力的电子设备。
加速力就是当物体在加速过程中作用在物体上的力,就好比地球引力,也就是重力。
加速力可以是个常量,比如g,也可以是变量。
加速度计有两种:一种是角加速度计,是由陀螺仪(角速度传感器)的改进的。
另一种就是线加速度计。
2、加速度传感器一般用在哪里 通过测量由于重力引起的加速度,你可以计算出设备相对于水平面的倾斜角度。
通过分析动态加速度,你可以分析出设备移动的方式。
但是刚开始的时候,你会发现光测量倾角和加速度好像不是很有用。
但是,现在工程师们已经想出了很多方法获得更多的有用的信息。
加速度传感器可以帮助你的机器人了解它现在身处的环境。
是在爬山
还是在走下坡,摔倒了没有
或者对于飞行类的机器人来说,对于控制姿态也是至关重要的。
更要确保的是,你的机器人没有带着炸弹自己前往人群密集处。
一个好的程序员能够使用加速度传感器来回答所有上述问题。
加速度传感器甚至可以用来分析发动机的振动。
目前最新IBM Thinkpad手提电脑里就内置了加速度传感器,能够动态的监测出笔记本在使用中的振动,并根据这些振动数据,系统会智能的选择关闭硬盘还是让其继续运行,这样可以最大程度的保护由于振动,比如颠簸的工作环境,或者不小心摔了电脑做造成的硬盘损害,最大程度的保护里面的数据。
另外一个用处就是目前用的数码相机和摄像机里,也有加速度传感器,用来检测拍摄时候的手部的振动,并根据这些振动,自动调节相机的聚焦。
概括起来,加速度传感器可应用在控制,手柄振动和摇晃,仪器仪表,汽车制动启动检测,地震检测,报警系统,玩具,结构物、环境监视,工程测振、地质勘探、铁路、桥梁、大坝的振动测试与分析;鼠标,高层建筑结构动态特性和安全保卫振动侦察上。
3、加速度传感器是如何工作的 线加速度计的原理是惯性原理,也就是力的平衡,A(加速度)=F(惯性力)\\\/M(质量)我们只需要测量F就可以了。
怎么测量F
用电磁力去平衡这个力就可以了。
就可以得到 F对应于电流的关系。
只需要用实验去标定这个比例系数就行了。
当然中间的信号传输、放大、滤波就是电路的事了。
现代科技要求加速度传感器廉价、性能优越、易于大批量生产。
在诸如军工、空间系统、科学测量等领域,需要使用体积小、重量轻、性能稳定的加速度传感器。
以传统加工方法制造的加速度传感器难以全面满足这些要求。
于是应用新兴的微机械加工技术制作的微加速度传感器应运而生。
这种传感器体积小、重量轻、功耗小、启动快、成本低、可靠性高、易于实现数字化和智能化。
而且,由于微机械结构制作精确、重复性好、易于集成化、适于大批量生产,它的性能价格比很高。
可以预见在不久的将来,它将在加速度传感器市场中占主导地位。
微加速度传感器有压阻式、压电式、电容式等形式。
·压电式 压电式传感器是利用弹簧质量系统原理。
敏感芯体质量受振动加速度作用后产生一个与加速度成正比的力,压电材料受此力作用后沿其表面形成与这一力成正比的电荷信号。
压电式加速度传感器具有动态范围大、频率范围宽、坚固耐用、受外界干扰小以及压电材料受力自产生电荷信号不需要任何外界电源等特点,是被最为广泛使用的振动测量传感器。
虽然压电式加速度传感器的结构简单,商业化使用历史也很长,但因其性能指标与材料特性、设计和加工工艺密切相关,因此在市场上销售的同类传感器性能的实际参数以及其稳定性和一致性差别非常大。
与压阻和电容式相比,其最大的缺点是压电式加速度传感器不能测量零频率的信号。
·压阻式 应变压阻式加速度传感器的敏感芯体为半导体材料制成电阻测量电桥,其结构动态模型仍然是弹簧质量系统。
现代微加工制造技术的发展使压阻形式敏感芯体的设计具有很大的灵活性以适合各种不同的测量要求。
在灵敏度和量程方面,从低灵敏度高量程的冲击测量,到直流高灵敏度的低频测量都有压阻形式的加速度传感器。
同时压阻式加速度传感器测量频率范围也可从直流信号到具有刚度高,测量频率范围到几十千赫兹的高频测量。
超小型化的设计也是压阻式传感器的一个亮点。
需要指出的是尽管压阻敏感芯体的设计和应用具有很大灵活性,但对某个特定设计的压阻式芯体而言其使用范围一般要小于压电型传感器。
压阻式加速度传感器的另一缺点是受温度的影响较大,实用的传感器一般都需要进行温度补偿。
在价格方面,大批量使用的压阻式传感器成本价具有很大的市场竞争力,但对特殊使用的敏感芯体制造成本将远高于压电型加速度传感器。
·电容式 电容型加速度传感器的结构形式一般也采用弹簧质量系统。
当质量受加速度作用运动而改变质量块与固定电极之间的间隙进而使电容值变化。
电容式加速度计与其它类型的加速度传感器相比具有灵敏度高、零频响应、环境适应性好等特点,尤其是受温度的影响比较小;但不足之处表现在信号的输入与输出为非线性,量程有限,受电缆的电容影响,以及电容传感器本身是高阻抗信号源,因此电容传感器的输出信号往往需通过后继电路给于改善。
在实际应用中电容式加速度传感器较多地用于低频测量,其通用性不如压电式加速度传感器,且成本也比压电式加速度传感器高得多。
4、在选购加速度传感器的时候,需要考虑什么 ·模拟输出 VS 数字输出: 这个是最先需要考虑的。
这个取决于你系统中和加速度传感器之间的接口。
一般模拟输出的电压和加速度是成比例的,比如2.5V对应0g的加速度,2.6V对应于0.5g的加速度。
数字输出一般使用脉宽调制(PWM)信号。
如果你使用的微控制器只有数字输入,比如BASIC Stamp,那你就只能选择数字输出的加速度传感器了,但是问题是你必须占用额外的一个时钟单元用来处理PWM信号,同时对处理器也是一个不小的负担。
如果你使用的微控制器有模拟输入口,比如PIC\\\/AVR\\\/OOPIC,你可以非常简单的使用模拟接口的加速度传感器,所需要的就是在程序里加入一句类似acceleration=read_adc()的指令,而且处理此指令的速度只要几微秒。
·测量轴数量: 对于多数项目来说,两轴的加速度传感器已经能满足多数应用了。
对于某些特殊的应用,比如UAV,ROV控制,三轴的加速度传感器可能会适合一点。
·最大测量值: 如果你只要测量机器人相对于地面的倾角,那一个±1.5g加速度传感器就足够了。
但是如果你需要测量机器人的动态性能,±2g也应该足够了。
要是你的机器人会有比如突然启动或者停止的情况出现,那你需要一个±5g的传感器。
·灵敏度: 一般来说,越灵敏越好。
越灵敏的传感器对一定范围内的加速度变化更敏感,输出电压的变化也越大,这样就比较容易测量,从而获得更精确的测量值。
·带宽: 这里的带宽实际上指的是刷新频率范围。
也就是说每秒钟,传感器会产生多少次读数。
对于一般只要测量倾角的应用,50HZ的带宽应该足够了,但是对于需要进行动态性能,比如振动,你会需要一个具有上百HZ带宽的传感器。
·电阻\\\/缓存机制: 对于有些微控制器来说,要进行A\\\/D转化,其连接的传感器阻值必须小于10kΩ。
比如Analog Devices's analog 加速度传感器的阻值为32kΩ,在PIC和AVR控制板上无法正常工作,所以建议在购买传感器前,仔细阅读控制器手册,确保传感器能够正常工作
简述电容式传感器的基本工作原理、类型
电容式传感器工作原理: 电容式传感器也常常被人们称为电容式物位计,电容式物位计的电容检测元件是根据圆筒形电容器原理进行工作的,电容器由两个绝缘的同轴圆柱极板内电极和外电极组成,在两筒之间充以介电常数为e的电解质时,两圆筒间的电容量为C=2∏eL\\\/lnD\\\/d,式中L为两筒相互重合部分的长度;D为外筒电极的直径;d为内筒电极的直径;e为中间介质的电介常数。
在实际测量中D、d、e是基本不变的,故测得C即可知道液位的高低,这也是电容式传感器具有使用方便,结构简单和灵敏度高,价格便宜等特点的原因之一。
实验四 电容式传感器测量位移实验
电传感器测量位移实验一、实验目的(1)电容感器结构及。
(2)熟悉数据采集系统的结构与应用。
二、基本原理(一)电容式传感器及其测量电路1、电容式传感器本实验采用的传感器为圆筒式变面积差动结构的电容式位移传感器,如图1所示:它是有二个圆筒和一个圆柱组成的。
设圆筒的半径为R;圆柱的半径为r;圆柱的长为x,则电容量为C=ε2x/ln(R/r)。
图中C1、C2是差动连接,当图中的圆柱产生∆X位移时,电容量的变化量为∆C=C1-C2=ε22∆X/ln(R/r),式中ε2、ln(R/r)为常数,说明∆C与位移∆X成正比,配上配套测量电路就能测量位移。
图1实验电容式传感器结构示意图2、测量电路测量电路画在实验模板的面板上,其电路的核心部分是二极管充放电电路。
(二)数据采集系统数据采集系统(数据采集卡)对实验数据(模拟量)进行采集并与计算机(PC机)通讯,再用计算机对实验数据进行分析处理。
其原理框图如图2所示。
图2数据采集系统实验原理框图三、需用器件与单元主机箱、电容传感器、电容传感器实验模板、测微头;数据采集通讯卡(内置式,已经装在主机箱内)、RS232连线、计算机。
附:测微头的组成与使用测微头组成和读数如图3所示。
测微头读数图图3测位头组成与读数测微头组成:测微头由不可动部分安装套、轴套和可动部分测杆、微分筒、微调钮组成。
测微头读数与使用:测微头的安装套便于在支架座上固定安装,轴套上的主尺有两排刻度线,标有数字的是整毫
上一篇:注重我的家庭家教家风心得体会
下一篇:邓小岚心得体会